DIGITIZATION OF THE ELECTRICAL GRID

"Smart" Cities Brown Bag Lunch, UW Parkside Professor Ross Astoria, JD/PhD

LEARNING OBJECTIVES, YO

- 1. Describe the present regulatory configuration of the utility sector ("the legal configuration of hydrocarbon infrastructure")
- 2. Outline the transition of capitalist accumulation in the context of the transition to renewables
- 3. Identify blockchain strategies for transitioning to renewables
- 4. Evaluate whether these technologies are "smart" or "not smart" for the "smart" city

CAPITALISM'S TRANSITION

"Old" Capitalist Economy

- "Fordist"
- Centralization
- Production of: consumer products
- Unionization steady 40-hour work week
- The Consumer and stuffication

"New" Capitalist Economy

- Post-Fordist
- De-centralization
- Production of: "experiences"
- Precarviate
- Digitization

"THE CONSUMER"

CAPITAL EXPENDITURE BIAS IN THE ELECTRICAL POWER UTILITY SECTOR

- Smyth v. Ames (1898)
 - "a state enactment, or regulation made under the authority of a state enactment, establishing rates for the transportation of persons or property by railroad that will not admit of the carrier earning such compensation as . . . is just to it and the public, would deprive such carrier of its property without due process of law." Smyth v. Ames, 169 U.S. 466 (1898).
- FPC v. Hope Natural Gas (1944)

CAPITAL EXPENDITURE BIAS IN THE ELECTRICAL POWER UTILITY SECTOR

- Consequence 1: Incentive towards fixed capital projects, owned by the utility (not 3rd parties)
- Consequence 2: State first secures capital's profit ("return on investment"); other resources, such as distributed generation and efficiency, valued secondarily and derivatively
- Consequence 3: Well-channeled circuits of capital towards utility "size" projects
- Consequence 4: Establishment of unidirectional relationship between "producer" and "consumer"

GEOGRAPHICALLY BOUNDED

• The utility's <u>ledger</u> is also geographically bounded

RURAL ELECTRICAL COOPERATIVES

FERC CREATED WHOLESALE MARKETS

WISCONSIN TERRITORY MAP

ASTORIA'S UTILITY BILL

• One-way ledger, - like so not dope.

30 Days) - 58 Heating Degree Days / 158 Cooling Degree Days Current Electricity Charges

Carrent Electricity Charges	
Residential Electric Service - RG1 30 Days	
Facilities (30 days x \$.526020/days) \$1	5.78
State Low-Income Assistance Fee.	52.39
Energy (491 kWh x \$.131110/kWh) \$6	64.38
Fuel Cost Adjustment (491 kWh x \$.000580-/kWh)	
Renewable Grant CR (491 kWh x \$.000630-/kWh)	\$.31CR
Subtotal Electricity Charges \$8	31.96
Sales Tax (\$79.57 x 5.50%)	64.38
Total Electricity Charges \$8	36.34

TAKE HOME!

- In the old, "Fordist" mode of production, a centralized utility's revenues were collected from the generation and "sale" of electrical power sufficient to preserve capital accumulation ("profit") based upon the utility's prudent capital expenditures.
- Uni-directional relation ("producer"/"consumer") with a centralized ledger and customer list
- Ledger, production, and ownership are geographically bounded

WHAT'S UP IN NEW YORK? REFORMING THE ENERGY VISION (REV)

- revising utility revenues streams
- Distributed System Implementation Plan
- modifying low- to moderate-income programs
- adopting a clean energy standard
- community net metering
- community choice aggregation

- "resetting" the retail energy service provider market
- establishing a benefit cost analysis framework
- Established a clean energy fund (Green Bank)
- valuing distributed energy resources
- utility administered energy efficiency portfolios

VALUE OF DISTRIBUTED ENERGY RESOURCES (VDER)

Hypothetical 2 MW PV

e "retail NEM Credit" column represents compensation NEM provides per kWh.

ne "Old Distributed Gen. Value" column represents the potential value that may be provided under NEM price signals, when the kWh and kW efits are calculated and then expressed on a per kWh basis

e "REV Distributed Gen. Value" represents the potential locationalkW and kWh value that could be created if NEM price signals are replaced more efficient price signals.

LOCATION BASED MARGINAL PRICING

MISO

• New York

CLEAN ENERGY STANDARD

 Renewable Energy Standard – every loadserving entity (LSE) must procure an assigned number of renewable energy credits (RECs, in MWh) and submit them to the New York State Energy and Research Development Authority.

Data reflects an adoption scenario, not a commitment to a particular

HOW BLOCKCHAIN WERKS

Peer-to-peer decentralized ledger (as compared to a bank, or a utility)

The ledger of transactions is verified by "miners" and the ledger is kept on each "node" in the network

Transactions are stored in "blocks" which are "chained" in a way which makes it impossible (Challenging?, difficult?) to alter past verified transactions, preventing double payment

A BITCOIN BLOCK, YO

Block #549072

Summary	
Number Of Transactions	2950
Output Total	7,700.0516977 BTC
Estimated Transaction Volume	988.57945843 BTC
Transaction Fees	0.21311036 BTC
Height	549072 (Main Chain)
Timestamp	2018-11-07 01:05:40
Received Time	2018-11-07 01:05:40
Relayed By	ViaBTC
Difficulty	7,184,404,942,701.79
Bits	388443538
Size	1264.037 kB
Weight	3992.534 kWU
Version	0x20000000
Nonce	4072827148
Block Reward	12.5 BTC

Hashes	
Hash	0000000000000000140d1b5083206db695430f846b90be2e09877f55e3f2fa
Previous Block	0000000000000000018649424e7ed6effb69397181b4efef71a5979f2d3c60c
Next Block(s)	
Merkle Root	ac93d7323758375bad74cf0960decc00933508b8aebbca81ce59eb34d95ebc25

A DOGECOIN BLOCK, WOOF!

AMOUNT TRANSACTED 10,700.16865001 DOGE	FEES 1.0 DOGE	RECEIVED 2 minutes ago	CONFIRMATIONS 3		
	Advar	iced Details 🗸			
Block Hash	47703d3a78403efa39f8f2284dcbd13d51ef2011faea36dc5548ea175e366d8d				
Block Height	2,463,299				
Transaction Index	3 (permalink)				
Size	333 bytes				
Lock Time					
Version	1				
	API Cal	API Docs			

EXAMPLES OF DIGITIZATION

- Ordinary Data Collection, just tons more of it
 - New York Public
 Authority and GE

DIGITIZATION VIA BLOCKCHAIN

- Renewable Energy Credits
- new currency representing something other than what fiat currency represents (like power!)
- Ex: WePower's Initial Coin Offering (\$40 million, about 29,300 contributors)

DISTRIBUTED ENERGY RESOURCE

- Coordinate the "values" produced by the differing contributors to the decentralized grid
- Electron's 'ethr' R Package: https://github.com/bsdstudios/ethr

CRITIQUES AND QUERIES: SMART CITY, OR NOT-SMART CITY?

- Takes energy to "mine" cryptocurrency
- Blockchain is, like, so slow . . .
- Still need access to the central ledger, i.e., an order from the public service commission changing the monopoly utility's accounting practices
- It's electric, boogie-woogie
- Just 4 mining "pools" control greater than 50% of mining capacity on Bitcoin
- Where's the capital accumulation?

Guardian graphic | Source: Nature Sustainability. Note: Energy costs are averages of daily prices in 2018 for cryptocurrencies and 2017 for metals. Heating 10L of liquid water from OC to 100C requires about 4.2MJ